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ABSTRACT 

We develop a first order formalism for the quantization of gravity. We take as canonical 
variables both the induced metric and the extrinsic curvature of the (d - 1) -dimensional 
hypersurfaces obtained by the foliation of the d - dimensional spacetime. After solving 
the constraint algebra we use the Dirac formalism to quantize the theory and obtain a 
new representation for the Wheeler-Dewitt equation, defined in the functional space of 
the extrinsic curvature. We also show how to obtain several different representations 
of the Wheeler-Dewitt equation by considering actions differing by a total divergence. 
In particular, the intrinsic and extrinsic time approaches appear in a natural way, as 
do equivalent representations obtained by functional Fourier transforms of appropriate 
variables. We conclude with some remarks about the construction of the Hilbert space 
within the first order formalism. 
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1. Introduction 

One of the long standing problems of physics is the quantization of the gravitational field. 

Although this question is almost as old as general relativity, it has been mostly in the last 

thirty years that many attempts to obtain a consistent theory of quantum gravity have 

been developed [l]. In fact, looking through the literature, one soon realizes the various 

schools of thought that mainly reflect person& ways of tackling the problem, although 

there is a traditional division in two groups; on one side stands the particle physicist’s 

way of treating the graviton as the bearer of quantum fluctuations of the gravitational 

field around a classical background, the goal being the construction of a renormalizable 

-or even finite- S-matrix that would describe the interactions of the gravitons between 

themselves and other matter fields present. This is known as the covariant method. On the 

other side stands the general relativist’s method with its emphasis on geometry, topology 

and spacetime structure and its conceptual independence on the asymptotic structure at 

infinity which, in principle, is applicable to both closed and open universes. This is known 

as the canonical method. The first method is more adequate for calculations of scattering 

amplitudes in asymptotically flat Euclidean spaces, while the second method is concerned 

with the strong non- linear effects that appear near a spacetime singularity or at the Planck 

scale. 

This work was originally motivated by the important role that higher-order curvature 

terms are believed to play when studying gravity at distances close to the Planck length. 

These modifications of pure gravity seem to be justified even in light of string theories, 

where the “low energy” effective action naturally has higher-order curvature terms [2]. In 
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fact, we were particularly interested in studying the effects of topological terms such as 

the Chern-Simons [3] terms in (2 + 1) -dimensions and the Euler-Gauss-Bonnet (EGB) 

combination in d -dimensions (d > 4) on the Wheeler-Dewitt approach to the wave 

function of the universe [4]. Nevertheless, as we will see below, the construction of a 

Hamiltonian formalism for the quantization of these theories is far from trivial. 

As an illustration, let us consider the EGB combination for arbitrary d > 4 . Con- 

trary to the 4 -dimensional case, the EGB is not a topological invariant and thus can 

be considered as a viable quadratic curvature action with the unique property amongst 

such actions that its variation does not involve explicit derivatives of the curvature. If we 

follow the usual canonical formalism, it is best to adopt the method of Amowitt, Deser 

and Mimer (ADM) (51, and consider a decomposition of spacetime into a one-parameter 

family of space-like hypersurfaces by writing the d -dimensional line element as 

ds2 = -N2dta + hij(dz’ + N’dt)(dZ’ + Njdt) (1.1) 

where N and N’ are known as the lapse function and shift vector, respectively. The 

tensor hij is the induced metric of the space-like hypersurface and the indices i,j,... 

run from 1 to d - 1 [5]. In what follows, greek indices will cover the whole spacetime. 

Quantities built from hii have a tilde superscript. 

If we write the Lagrangian density as 

f. = k-‘R + CX(R,,~~R~“~ - 4R,,,RpY + R’) , .(1.2) 

we obtain, after a tedious calculation, the action in ADM form 
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I = I 
dtdd-‘zNh’/2{k-‘(trK2 - K2 + ii) + a[(2trK4 - (trK2)Z + 2K%rK2+ 

- iKtrK3 - iK4) + (-4kijklKiiKki - 8t~(K*i) - 2RKa+ 

+ 2Eit7K2 + BK(trK6) + (hijkliijk’ - 4kijhii f R’)]} + s.t. , (1.3) 

where, tr(Kk) = Kij$i ;p = (hiiKij)2 ;tr(K’ii) = k&K’“KF ;t7K4 = 

K;K”KpmK,” ;trK3 = K,‘K’PKpi ;trK2 = KijK’j . Kij is the extrinsic curvature 

of the space-like hypersurface defined as the differential change in the unit normal pro- 

jected into the surface, Kij = -njlli. The parallel bars denote covariant derivatives with 

respect to the full metric of spacetime. 

Following the usual procedure, we should now obtain the canonical momenta 

(R, ?ri, &) conjugate to the canonical variables (N, N’, h’j) and then write the Hamil- 

tonian in terms of the variables and the momenta. The reader can easily verify that, 

contrary to the Einstein-Hilbert case, the action has terms with K4 and thus that rrij 

has terms proportional to K3 As it stands, we cannot write the Hamiltonian as being 

quadratic in the momenta. We then decided to treat Kij as an independent variable by 

going to a first order formalism; the introduction of an extra canonical variable and its 

conjugate momentum could be useful in the construction of the correct Hamiltonian of 

theories with higher order terms in the curvature. 

As a first step towards this final goal, we start with the simplest possible case: The 

construction of a first order formalism for Einstein gravity. As we will show, there is a 

rich structure to be explored by going to first order even in this apparently simple case. 

In fact, as it turns out, the theory is far from being trivial; we will have to deal with 
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the quantization of a theory with second class constraints having, as a guideline, the final 

equivalence between the first and the second order formalisms. The advantage of using a 

first order formalism comes from the choice of different representations that are possible, 

due precisely to the second class constraints. As it is well known [6], when quantizing 

a theory with second class constraints, one has to reduce the largest possible number of 

second class constraints into first class since the latter are the ones to be applied on the wave 

functional. The remaining second class constraints are to be treated as identities between 

quantum operators, thus providing a relation between different possible representations. 

We will explore this idea extensively in this work, and will show how the pairs of canonical 

variables and conjugate momenta (h’j, rij) and (K;j, P’j) are related by the second class 

constraints and can be used to obtain different representations of the Wheeler-Dewitt 

equation. We will also show how different representations found previously in the literature 

can be derived naturally from the first order formalism. 

The paper is organized as follows; in section 2 we develop the classical theory in first 

order form by building the total Hamiltonian, implementing the relevant constraints and 

by classifying them into first and second class. We show that the theory has d2 second 

class constraints but that d of those can be reduced to first class. We use the Dirac 

formalism [6] and construct the Dirac brackets in order to obtain the proper commutation 

relations between the variables. In section 3 we quantize the classical theory built in section 

2. We show that once the commutation algebra is constructed we can have two possible 

representations of the Wheeler-Dewitt equation, where the wave functional may depend 

either on the metric or on the extrinsic curvature of the space-like hypersurface. (Actually, 
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things are not so simple. In order to obtain the correct commutation relations we have 

to redefine the canonical variables. The pairs of variables that will furnish equivalent 

representations are (h’j, zrij) and (Kij, P’j) , where the prime denotes the new canonical 

variable.) Section 3 ends with a discussion of several other representations that can be 

obtained by the proper manipulation of the first order action via different integrations by 

parts and the identification of the correct dynamical variables. We conclude in section 

4 with a brief discussion on the construction of the Hilbert space within the first order 

formalism and by summing up our results and remaining questions. 

2. Constraint structure of gravity in first order form 

By using the ADM decomposition of spacetime as in eq. (l.l), we can write the Einstein- 

Hilbert action 

I[g”“] = / ddz(-g)‘~2g”YR,, (2.1) 

I[h’j, Kij, N, N’] = 
J 

&‘.&/2[ _ 2hijkij _ /+Kij + N(k + K2 - KijK’i) 

- 2Ni(Ki - 6fK);j - 2(N;i - KijNj)“] . (2.2) 

Note that we are taking both h”J’ and Kij es independent variables, which is equiv- 

alent to the use of the Palatini formalism. The last term is a surface term that can be 

neglected since its variation vanishes. The dot indicates time derivatives, and the semi- 

colon denotes covariant derivatives with respect to the metric of the hypersurface. We are 

only considering vacuum closed spacetimes. The extension of this formalism to include 

matter fields is straightforward. 
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In order to obtain the action familiar of the second order treatment Ii’], we have to use 

the definition of the connection in terms of the metric that, in the language of the ADM 

decomposition, is given by 

gj = 2K’j + N(“i) (2.3) 

where the parentheses imply symmetrization of the indices. If we integrate the first 

term of (2.2) by parts and use (2.3), the action (2.2) becomes, 

I[h’j, N, N’] = -2 
I 

dd-‘zh’i2K f 
I 

ddzNh’f21KijKij - K2 + i] , (2.4) 
BM 

where M is the d -dimensional manifold and t3M its boundary. As it is well known in 

the literature [8], we must add the surface term appearing in (2.4) to the Einstein-Hilbert 

action (2.1) so that its variation with respect to h 0’ will give Einstein’s equations. 

Now we start the detailed study of the first order formalism. In order to build the 

Hamiltonian from the action (2.2), we first calculate the conjugate momenta to the vari- 

ables N, N’, h’j and Kij , 

p’i z ar ~ = -2h’12h’i 
aK;j 

The Hamiltonian density is then given by 

)(,, = h112[-N(i + K2 - KijK’j) + 2N’(K,1‘ - 6,!‘K);j] . 
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The subscript 0 is a reminder that this is not the most general Hamiltonian of the theory. 

Following Dirac [6], whenever we have relations of the kind b(~,p) = 0 (the primary 

constraints) the total Hamiltonian must include linear combinations of these constraints. 

We thus define the total Hamiltonian density, 

NT = No - h”‘[X’j(T?ij + h’12Kij) + wij(pii + 2hl/2hii) + xT + Airi] 
. 

(2.7) 

X,Xi,Xij and wij are Lagrange multipliers that can, in principle, be functions of the 

canonical variables. 

We can write the Hamilton’s equations of motion using the Poisson brackets, i = 

{g, HT} , where g is any function of the canonical variables and HT is the total Hamilto- 

nian. In order for the theory to be consistent classically, the constraints must be maintained 

by the time evolution of the system. In other words, their Poisson brackets with the total 

Hamiltonian must vanish. We use the notation weakly equal (M) to remind us of only 

using the constraints after calculating the brackets. The only non-zero Poisson brackets 

between the canonical variables are 

{h’+),~~,,,(z~)} = +%A + &5/)6d(z - ZI) (2.8~) 

{Kij(z),P’“‘(zI)) = :(6,!6,!” + 6,!6p)Jd(z - z!) (2.8b) 

(Of course, {N, r} and {N’, ri} are not zero but they will not be relevant, as we will see 

below.) 

Note that Hamilton’s equations for the canonical variables give, 

jq= aUT aR = {N, HT} = -h’12X (2.94 
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= {N’,HT} = -h’PX 

= {Kij, XT} = -h’12Wij 

(2.9b) 

(2.9d) 

From (2.9a) and (2.9b) we can see that N and N’ are arbitrary. The Poisson brackets 

of x and ni with HT will imply that the two terms in (2.6) are separately zero. They are 

called the secondary constraints, with N and N’ playing the role of Lagrange mulptipliers. 

We can thus discard N and N’ as canonical variables and consider NT without the last 

two terms. 

Now we must calculate the Poisson brackets of all the constraints with HT . According 

to Dirac, we can obtain three possible results: 

i)O = 0 which is trivial; 

ii)d(q,p) E=C+ 0, i.e., we may obtain another condition on the canonical variables, in- 

dependent of X and us , the secondary constraints. We must make sure that they are 

conserved in time in the same way as primary constraints and repeat the process until all 

consistency conditions are exhausted. As just mentioned, this is the case for {x, HT} and 

{+,HT) ; 

iii)We may obtain equations for the Lagrange multipliers ss functions of the canonical 

variables. This will turn out to be the case in our formalism. In principle [S], we should 

add to the solutions of the inhomogeneous equations in iii) the solutions of the associated 

homogeneous equations, (related to the eq. {di, No} + um{4i, I,&} m 0 ,where di is an 

abbreviation for the constraints), Vm{di, &} = 0 , but in our case the coefficients V,,, 

are all zero; 
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iv)It may not be possible to obtain any solution. The Lagrangian is inconsistent. 

Writing the constraints as 

Ho = -h”2(jj + K2 - KijKij) = 0 

Hi = 2h’12(K,1’ - S,!‘K);j ~ 0 

,$!. = rij + h’12Kij x 0 
‘J 

&ii = pii + 2hlPhii a 0 

we obtain for the Poisson brackets between all the constraints (the ’ denotes a quantity 

evaluated at the point z’ ) 

{H~,H,!}={H~~H~}={Hi,H:)=O (2.104 

{Ho,~::} = - h1’2[hijhed6(Z - Z’),c;d - ~(ZZ - ~‘),i;j+ 

+ (& + 2KKij - 2K,kKi)6(~ - z’)] - :H,,~(z - d)hij (2.106) 

{Ho,pj) = 2hW(Kii _ hijK)6(z - q (2.10c) 

{Hi, 4:;) =HihktG(Z - z’) + h”2[(Kik6(s - z’));I+ 

+ (&6(z - Z’));k - KJzr;i6(Z - z’)+ 

- (KHb(Z- Z’));i - KyhklG(Z - z’);~ 

{Hi,4’2k’} = -2h1’2[hk’6(s - z’),i - -$6Fh’j + 6,!hki)6(z - T/),~] 

{+ij,4C} = -ih1’2(KijhkI - hijKkl)6(z- z’) 
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{&j,$“k’} = -h1/2(# _ phii) 

{,$,2ij,#,/2kl} = 0 

(2.W) 

(2.10h) 

Note that there is no constraint that commutes with all others. Following Dirac’s 

nomenclature, we call these second class constraints. Thus, all d2 constraints of the theory 

are second class. Here, the differences from the first and second order formalisms are 

evident; in the latter case all d constraints are first class and can be directly imposed on 

the wave functional in the quantization of the theory. In first order form more work must 

be done before we quantize. 

We must first impose the constancy in time of the d2 second class constraints by 

putting their Poisson brackets with the total Hamiltonian weakly equal to zero. The 

results can be easily read out from eq.(2.10). From the brackets with the constraints 

4’ and c$~ it is easy to verify that one obtains two equations expressing the Lagrange 

multipliers in terms of the canonical variables as 

xii = -hl/2(2NKii _ Ni;j _ Nj;i) 

Wij = - h”‘[N(Ei + KKij - 2K,~K,j) - N,i;j+ 

Nm;iKy + Nnqj K,!” + N’” Kij;m] 

With the above values of A’j and wij we obtain Einstein’s equations, 

,riij = {Kij, HT} = Wij (G’p,~~J-~ = 0) 

. ,. 
h*J = {hii, jyTj = xii hvlla = 0) 

11 

(2.114 

(2.llb) 
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(2.12b) 



?fij = {“ii, HT} (GpvIgIi = 0 and Q,,vllu = 0) (2.12c) 

. 
PaJ = {pii,HT} (g,,+, = 0) (2.12d) 

while the variation of the total Hamiltonian with respect to the Lagrange multipliers give 

~HT -= 
6N 

0 =+ 2 + KS - KijK’j = 0 (Gpy~e~Y) (2.12e) 

~HT - = 0 + (Kj - 6iK);j = 0 (G#,n“lz = 0) 
6Ni W2f 1 

~HT - - 0 6x0 - 
+ nij + h”2K’. = 0 ‘I (2.129) 

~HT - = 0 
6wij 

+. p’j + h’bh’j = 0 (2.124 

where G,, is the Einstein tensor, the parallel bars denote covariant derivatives with 

respect to the full metric of spacetime and 1: is the projector onto the hypersurface. 

Also, the d remaining Poisson brackets with Ho and Hi will not impose any restric- 

tions on N and N’ . This suggests that d out of the d(d - 1)/Z + d(d - 1)/2 + d second 

class constraints are first class, since there are d Lagrange multipliers that are not tixed 

by the dynamics [6]. 

The next step is then to reduce d of the d2 second class constraints to first class by 

considering linear combinations of the second class constraints. We can do this by noting 

that the total Hamiltonian, which is a linear combination of the second class constraints, 

is automatically a first class constraint since its Poisson brackets with all constraints are 

weakly equal to zero. In order to obtain d first class constraints that are not integral out 

of HT (the first class constraints are going to be applied on the wave function to generate 

a differential equation) we simply use the freedom in N and N’ (remember they are 

arbitrary) by choosing, respectively 

12 



i) N=6(z-2’); N’=O 

iTo = h’12(R + Ka - KijK’i) + 2Kiirij + (Rij + KKij - 2Kf’Kpj)Pij - Pzj (2.13~) 

ii)N = 0 , Ni = 6:6(r - z’) 

Ra = 29~~;~ - 2K,j;iP’j - 2KajPy + Kij;,PiJ’ (2.13b) 

In this way we obtain d first class constraints (go and I& ) and are left with 

d(d - 1) independent second class constraints (c5:j and cSlij ). The latter will become 

strong equalities between quantum operators once we introduce the Dirac brackets (i.e. 

they will commute with every function of the canonical variables) [6], 

{A(~,B(Y))* = -~A(~>B(Y)I - / dud~{Ai(z),~“(u))(C-l),~(u,~){~P,B(y)} (2.14) 

where the matrix C2i)tk’) = {&, @‘} is built from the second class constraints only. in 

our case we obtain, 

cc- )(‘I) 
1 WW) = o 

(C-i);;;),cij, = -(C-i)~$ij) = -h-‘12(6,y - (d ! 2) hijhkr)6(Z - 2’) 

(C-‘)(22)(ij)(kl) = -ih-1’2(hijKkl - hklKij)S(Z - z’) 

With this prescription we eliminate the spurious variables that come from the sec- 

ond class constraints. In fact, we can now use these constraints to choose between two 

equivalent representations, 

“ii z -hl/2Kij ; pii = -2hl/2hij 
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since we now have 2w independent canonical variables out of the 4$$ original 

ones. 

Let us start with the conventional pair (h’i, “ii) : 

The Dirac brackets are, 

{hij(s),hkl(y))* = 0 

{hij(Z),Tkl(y))* = (-62 + -&hijhkl)6(z -y) 

{~ij(z)r~kI(Y)}* = $$(KijhkI - hijKkZ))J(Z - Y) . 

The two last brackets are telling us that sij is not a good canonical variable (i.e., when 

passing to the quantum formalism we cannot identify sij with -i$$ ). We can easily 

find the correct variable to be rij = -“ii + hijr with the two last brackets being now, 

{h’J(z),n:l(!/))* = a;+qz - Y) . 

With this choice, the d first class constraints (eq.(2.13)) become 

fza = 27rZJ. sj 0 (2.15a) 

- -JL+ih.~+:jx;, - hv2i B o 
d-2 

(2.15b) 

These are the familiar super-momentum and super-Hamiltonian constraints for Einstein 

gravity. Thus this choice of variables reproduces the results obtained from the second order 

formalism as expected. 
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The other possible choice is the pair (Kij,P’j) . Again, the Dirac brackets tell us 

that the variable Kij is not the proper one. By introducing Kij = i(Kij + &hijK) we 

obtain, 

{Pii(z),Pk’(y)}’ = {K;j(z),K;l(y)}* = 0 

{KJj(z), Pk’(y)}* = 6:6(z - y) 

In order to express the first class constraints in eq. (2.13) in terms of these variables 

we must use the second class constraints to obtain 

rij = -(-2)i+‘(d-3)-‘Kij ; hl/2 = (-$+(d-3)-l 

hij = (!)(d-3)-‘pij 

P 
; hij = ($)(d-3)-‘pij , 

where P = detP;j and Pij z (Pij)-’ . 

With these substitutions, the constraint (2.13b) becomes, 

I& = -2KLj;,Pij + K;j;apij FZ 0 (2.164 

Note, however that the covariant derivative still has the metric h’j (in the connection) 

that must be replaced by P’j . After some algebra we obtain, 

Ha = -2K&P’j - 2KLjP,fi + K&P’j m 0 (2.16b) 

To understand the physical meaning of this constraint, we calculate its Dirac bracket 

with Ki, and with Pii , 

{%(z), / dd-lyEa(y) = EZK:, + EpkK.4 + E“G,a 
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{Pk’(4? / dd-ly(a(y)~a(y)}* = t:Pli + [fiPki - PklEfi - P,$‘I’ 

Thus, we can see that they transform respectively as a tensor and as a tensor density of 

weight one under coordinate transformations on the hypersurface. The meaning of the 

constraint is then, essentially, the same in both representations, showing also that Kij is 

indeed the relevant canonical variable to be considered in the quantization. 

The constraint (2.13a) is, in terms of Kij and P’j , 

go = (T)(d-3)-1Ri\pij ) ~~fd~~, K;,Kij - KhjK;, - K;iK;j]Pm”Pij e 0 (2.17~~) 

where, 

(;)‘d-3)-l &+ +‘-dp)W)-’ [-pzj - ipijp’bpTb+ 

1 
+ -PgP,;‘P’J’ + 

2 ,a 4(dl 3) (-4PijP,ibP,f + (d - 7)PijPk’PTk+ 

+ (d - 7)Pk’P,yPij,l + PijP&PkrPyP,$b)] (2.17b) 

This concludes the construction of the classical theory in first order form. We checked 

that the imposition of the new constraints that appear in the first order formalism implies in 

particular expressions for Lagrange multipliers that are in agreement with what one obtains 

from Hamilton’s equations of motion. We reduced some of the second class constraints to 

first class, and showed how the introduction of the Dirac brackets transforms the remaining 

second class constraints into strong identities between the canonical variables allowing two 

different representations of the first class constraints; the first case considered (h’j and 

sjj ) gives rise to the super-momentum and super-Hamiltonian constraints familiar from 

the second order formalism. The second choice (Kij and P’j ) gives rise to the generator 
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of coordinate transformations on the hypersurface for the relevant canonical variables and 

to a modified super-Hamiltonian constraint whose meaning will be further clarified in the 

next section. 

3.Canonical Quantization 

We are now ready to quantize the theory following the usual steps. Note that we have a 

choice between two pairs of canonical variables due to the second class constraints. We 

start with the pair (h’j, sij ): First the canonical variables are turned into operators with 

the Dirac brackets becoming the usual commutation relations, 

(hii, a:j) H (h%, yj) 

1 

[hG(z),jTkl(y)] = i6$5(z - y) . 

These operators are substituted into the super-momentum (eq.(2.15a)) and into the super- 

Hamiltonian (eq.(2.15b)) constraints that are then turned into operators. The constraints 

are applied into the states Q selecting those that are physically permissible, (from now 

on we supress the carets on quantum operators) 

&a+) = hjr & ( > 
= 0 

;I 

ad+) = + h’12& > Q(h) = 0 ) (3.2) 

where we have chosen the =hij “representation with rrjj = -i& and go = Q(h’j) . Also, 

Giikr = ih-llQ[hikQr + hilhik _ (d ” 2) hijhkl] 

is the metric of superspace, the space of all positive definite d - 1 -metrics. 
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We have not solved the factor ordering problem. Following the standard procedure [l], 

we have chosen to put the metric terms on the left of the momenta in the super-momentum 

constraint, eq.(3.1), since with this choice its interpretation is more transparent: The 

wave functional Q(h) is independent of the particular choice of representation for the 

metric components hij(zk) in some system of coordinates zi The argument of the wave 

functional then belongs to the space of all metrics identified by a d - 1 diffeomorphism 

[71. 

The super-Hamiltonian constraint, eq.(3.2), is the “Wheeler-Dewitt” equation in its 

usual representation. We are also leaving aside the difficult problem of constructing a 

Hilbert space from the space of solutions of (3.2). We will come back to this question later 

on. 

Now we repeat the same steps for the other pair of coordinates, (Kij, Pij ). Choosing 

the “K’ n representation, we have that, P’f = -i& and q = Q(Klj) . The super- 
.> 

momentum and super-Hamiltonian constraints are, respectively, 

(3.4) 

KkjK;, + KiiKAj - (d - ‘) SJ = 0 (3.5) 

where F( &-) is obtained using eq. (2.17b) with P’j = -i& and Pij = -i& . 
.> 

If we perform an infinitesimal coordinate transformation, z;’ = Zi + [i(rk) and note 

that Kij transforms as, 

“Kij = tP,Kia + EgKi, + EaK,!j,o , 

it is easy to show that the super-momentum constraint has precisely the same meaning as 

in the other representation. 
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The constraint (3.5) is a new representation for the Wheeler-Dewitt equation defined 

now in the functional space of Kij Note that this representation can only be obtained 

by using the first-order formalism and is not simply a Fourier transform of the original 

equation. Although we expect the physics to be the same in both representations, this 

equation gives the probability amplitude for having a hypersurface with some K’ , thus 

providing information on the dynamics of the embedding of the hypersurface in spacetime. 

We hope to explore the consequences of this equation further [9]. 

As another illustration of the first-order formalism, we briefly show how other repre- 

sentations of the Wheeler-Dewitt equation can be generated by playing with total derivai 

tives in the original action, eq.(2.2). First, consider integrating by parts the second term 

in (2.2); in this way, the time derivative of the metric appears only in its determinant and 

the action becomes, 

I[h’j, K;j, IV, IV’] = 
/ 

dd-‘zdt(-h1/2hijk;j + Kh1j2 - MO) (3.9) 

If we follow the previous steps for the construction of the classical theory, we soon find that 

h’j is not the appropriate canonical variable but h’/2 We then write h’j = (h1/2)aiij , 

where a = -2/(d - 1) and derjl’j = 1 . The conjugate momentum to h’j2 is, rr = K = 

(h1/2)ab’ K,, and we must add the constraint z(det%j - 1) to the Lagrangian, where 

z is a Lagrange multiplier. We then construct the Dirac brackets and find that the correct 

momentum conjugate to h’j2 is z’ = 2(d - 2)/(d - l)K . In the quantum version, C’ is 

identified with -“& . Thus, in the super-Hamiltonian constraint the “intrinsic time” 

(hIi ) appears naturally. Likewise, writing Kij in terms of its traceless and trace parts 

(treating them as independent variables) and using the second class constraints, we could 
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have obtained the Fourier transform of iii in the“extrinsic time” (K ) approach to the 

Wheeler-Dewitt equation [9]. If we continue to explore the possibilities of the first order 

action, we can find various different representations of the Wheeler-Dewitt equation, some 

of them not yet known in the literature. We stress that this is only possible within the 

first order formalism, since in the second order formalism the action is quadratic in the 

velocities not allowing for partial integrations. Also, in the second order formalism we 

cannot use the traceless and trace parts of Kij as canonical variables to reproduce the 

above results. 

4.Conclusion 

We have constructed a first order formalism for Einstein gravity within the ADM formu- 

lation. After classifying all the constraints &s second class, we showed how some of them 

can be reduced to first class by using the arbitrariness in the lapse function and shift 

vector and the fact that the total Hamiltonian is a first class constraint by construction. 

By introducing Dirac brackets, we reduced the remaining second class constraints to iden- 

tities between pairs of canonical variables that allow us to choose between two possible 

representations, the hiJ’ and the Kij representations. We then quantized the theory using 

the canonical method and found that the first representation reproduces the well known 

super-momentum and super-Hamiltonian constraints obtained in the second order formal- 

ism whereas the second choice gives rise to a new representation of the Wheeler-Dewitt 

equation, defined in the functional space of a modified extrinsic curvature K,!j . 

We plan to try to solve it in the mini-superspace in the hope that using the connection 

between K and the expansion of the Universe we will obtain some insight into the arrow 
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of time problem. 

We have also showed how the first order formalism can generate many representations 

of the Wheeler-Dewitt equation by manipulation of total derivatives in the action and 

identification of the relevant canonical variables. As an example, we indicated how to 

obtain the extrinsic and intrisic time representations. We hope that by finding different 

representations of the Wheeler-Dewitt equation, more will be learned about the physics 

behind it. 

As mentioned in the introduction, the first order formalism can play a very important 

role in the quantization of theories with higher-order terms in the curvature. In particular, 

we note the similarity between Einstein gravity and the EGB theory in the sense that 

both have I;rii terms as surface terms contrary to other curvature squared actions. The 

Wheeler-Dewitt type equation in the EGB theory can be written, after a functional Fourier 

transform between the metric and its conjugate momentum, as a functional equation for 

a(r) , sz in the case for Einstein gravity. The difference between the two theories arises 

because, while in the Einstein gravity case the zij is related linearly with Kij , in the 

EGB case the momentum is given by a complicated expression involving the extrinsic and 

intrinsic curvatures of the hypersurface. Thus, the advantage of going to the first order 

formalism is clear in the latter case: The (Kij, Pij ) representation will indeed allow us to 

obtain an equation for the wave-function which will be a functional only of the extrinsic 

curvature, providing information about the expansion of the Universe. 

Finally, we would like to make some remarks on the Hilbert space problem of quantum 

gravity. Going back to the intrinsic time representation, we can, after some algebra, write 
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the super-Hamiltonianconstraint as (note that we are not using the second class constraints 

yet) 

[h’/2(K2 _ KijKij) + 2@,‘/2)2/(‘+-1)(Kii - !p);rij+ 

- 2(d - 2) 1/2 d _ 1 h Kd + (Rij + KKij - 2K+,KT)P’j - Pgj] Q = 0 (4-I) 

where we must make the substitution Kij = Kij + &hijK , in order to write 

6 6 
a'=-im ; Zij= -is ; 

6 pii = -;- 
6Kij 

Also, ‘I’ = Q(h112, iii, K;,) . Th e second class constraints are A = K ; ?Tij = 0 ; P’j = 

-h’/2h’i . 

We can see that x’ plays the role of a time derivative on superspace, thus making 

the above equation a Schedinger-like equation. It remains to be seen if it is possible 

to construct a Hilbert space based on the solutions of this equation before imposing the 

second class constraints. 
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